
Automating API development with JIT APIs
Dominic Hall- Supervised by: Konstantinos Markantonakis

Information Security Group, Smart Card and IoT Security Centre

Objectives
-Reduce development time by
automating common development
processes.
-Improve security and consistency of
application code by generating clean and
safe code.
-Encourage frontend driven
development for better UX.
-Avoid increasing limitations and
development time for non-automated
functionality.

Current Standard

JIT API alternative

Contact Information

▪Github:https://github.com/Dmium/
▪Email: dominiczy.hall@gmail.com
▪LinkedIn:
https://www.linkedin.com/in/dominiczyha
ll/

Views

Controllers

Models

Requests 
Data

Generates 
Response

Database

Views

JIT API

Requests 
Data

Generates 
Response

Views

Controllers

Models

Requests 
Data

Generates 
Response

Database

Key

Written by Developer

Generated by JITAPI

Selects 
Models

Returns 
formatted data

Requests 
data

Returns 
data

Selects 
Models

Returns 
formatted data

Requests 
data

Returns 
data

In industry developers work on models, views and
controllers which commonly becomes restrictive on
views (Generally the most important part of any
appliation given that this is what the user and client
see)

JIT API’s propose to replace this style with frontend
and test driven code generation (Eliminating the need
to write Controllers, Models and SQL)

JIT Research Problems
As with any concept that looks this useful there are
plenty of reasons why this has never beend one
before. The current primary issues are as follows:

-Detecting relationships between objects
(Partially solved)
-Consistent querying
(Solved in theory. Implimentation in progress)
-Differing conventions
(Partially solved by sticking to REST calls)

Proof of Concept
LAPI is a work in progress implimentation.
A working MVP with relationships and filtered queries
is complete. THE JITAPI and code generation is
functional.
Patial solutions have been found to the relationship
problem. By enforcing the REST link relation standard
we can guarentee correct relationships. In addition to
this linking through embedding is possible by using ids
that are unique across all models.
The biggest issue with relationships is when an int is
used to reference another object. The issue is it could
be an int or a relationship and having a program
diffentiate between tham is extremly difficult.

Introduction
With the widespread use of REST APIs and other web
API standards repeated writing of similar code has
become commonplace. There are several advantages
of automating this process.
-Reducing developer time
-Remove potential for convention and security slips
(In generated code)
-Faster project setup time.
-Easier changes to backend code leads to less
constrained frontend.

Alternative Efforts
Other alternatives such as FeathersJS have similar
functionality in that they generate REST code from a
developer specification. The key difference is they
can’t generate code from HTTP requests. The use of
HTTP requests to generate code means the backend
can be more malliable.

Another altenative rest-hapi uses a similar concept to
Feathers but suffers similar overhead with developer
time for specifying endpoints.

The JIT API solution hopes to reduce the overhead
from these other alternatives.

https://github.com/Dmium/
mailto:dominiczy.hall@gmail.com
https://www.linkedin.com/in/dominiczyhall/

