
Investigating the Effectiveness
of Obfuscation Against

Android Application Reverse
Engineering
Rowena Harrison

Supervisor: Prof. Keith Mayes

2014, Smart Card Centre – Information Security Group

<email> | www.scc.rhul.ac.uk

ABSTRACT
One particular threat facing Android is from repackaged

applications; that is legitimate applications that have been

reverse engineered, modified to include malicious code,

repackaged, and then distributed for download.

Software developers wary of the reverse engineering process

will obfuscate their code, trying to make it harder to read the

code and understand its function.

This project investigates the effectiveness of obfuscation to

counter Android application reverse engineering in practice

by creating an app and testing the obfuscation offered by the

tool ProGuard.

Project Objectives
• To create an Android application, with

functionality to encrypt and store

personal information.

• To reverse engineer this app using the

tools ApkTool and dex2jar and compare

their outputs to the application source

code through heuristic analysis.

• To create an obfuscated version of the

Android application and reverse

engineer this obfuscated app with

ApkTool and dex2jar.

• To compare the output of the tools on

the obfuscated app to the output of the

tools on the unobfuscated app through

heuristic analysis, in order to determine

the effectiveness of obfuscation to

combat reverse engineering.

RowenApp

PROBLEM
Android app developers want a robust

method to make the reverse
engineering process harder so apps are

not cloned and repackaged.

SOLUTION
ProGuard obfuscation is an effective way

to hinder the reverse engineering
process, but it is far from foolproof.

Android

Results

ProGuard

Android Apps

Reverse Engineering Tools

Conclusions

• The app created in this project, named

RowenApp, is designed to encrypt and

store personal banking information of the

user or users in a database.

• The app can then find and retrieve user

information when requested.

• The outputs of ApkTool and dex2jar for

RowenApp were compared, looking at

features such as: syntax, variable

names, context and conditional

statements.

• The outputs from RowenApp were

compared to those of RowenAppobsf,

and found that class, method and

variable names had been obfuscated an

replaced with meaningless letters, as

seen below.

• The context and purpose of the app was

still able to be discovered by examining

the code further.

• The Android OS is made up of several

layers; a Linux kernel, open source

libraries, a runtime environment, an

application framework with a Java

interface and an application layer.

• The Android runtime environment's

primary constituent is the Dalvik Virtual

Machine (VM), which allows applications

to be run on Android devices.

• Both tools successfully reverse

engineered both apps. Using the two

tools together can provide the

necessary means to provide a

reasonable understanding of the app.

• The reverse engineered output of

RowenAppobsf provided more of a

challenge than that of RowenApp;

requiring a more extensive analysis

and took several more hours to

understand the nature of the app.

• ProGuard was effective in hindering the

reverse engineering process; however

since the purpose of the app was still

able to be found, this tool is not

infallible.

• More test apps, containing all types of

computing logic and app functionality,

could be produced in order to test

obfuscation tools’ effectiveness against

reverse engineering.

• This would give insight into how these

tools obfuscate different pieces of

code, and provide input for their

improvement.

• Android apps are written in the Java

programming language and are stored

as an Android package, or .apk file.

• The main files of an app include: the

Android Manifest, app resources and the

source files.

• Apps can be written using the Android

Software Development Kit (SDK), which

provides the relevant libraries and API's

used to develop Android applications,

along with an emulator.

• Two tools were used in this project,

ApkTool and dex2jar.

• ApkTool is able to disassemble Android

applications into smali/baksmali, allow

the user of the tool to debug and modify

the code, and then repackage the

application. The smali files which are the

output of ApkTool can be read by various

editors.

• dex2jar converts the Dalvik bytecode

back into Java bytecode. This means the

source code can be viewed in the Java

format it was written in, using a graphical

interface, JD-GUI.

• ProGuard, a free tool which is available

as a stand alone product and within the

Android SDK, does four things: shrinking,

obfuscation, optimisation and pre-

verification.

• ProGuard was applied to RowenApp to

create the obfuscated app,

RowenAppobsf.

