
You Can't Touch This
Consumer-Centric Android

Application Repackaging Detection

Iakovos Gurulian

Supervisor: Dr Konstantinos Markantonakis

2015, Smart Card Centre – Information Security Group

Iakovos.Gurulian.2014@live.rhul.ac.uk | www.scc.rhul.ac.uk

ABSTRACT

Repackaged applications are modified versions of original

applications, that can potentially target large audiences based on the

original application's popularity. In this paper, we propose an

approach for detecting repackaged applications. Our approach takes

advantage of the attacker's reluctance to significantly alter the

elements that characterise an application without notably impacting

the application's distribution. These elements include the

application's name and icon. The detection is initiated from the client

side, prior to an application's installation, making it application store

agnostic. Our experimental results show that detection based on our

algorithm is effective and efficient.

Application Repackaging

• Repackaged applications are applications

that impersonate a genuine application, by

slight modifications/variations to the genuine

application's artwork and/or changes to its

source code in a way that the repackaged

application looks and/or feels like the

genuine application. The main objective of a

repackaged application is to mimic a genuine

application so it can target novice users that

gravitate towards the popularity/functionality

of the genuine application. Applications that

infringe the potential intellectual property of

the original application and present

themselves as unique/different applications

are excluded from this definition.

• Application repackaging usually involves

decompilation of the original application,

modification, recompilation and signing with

the attacker’s key.

• 86% of all malware distribution relies on

repackaged applications.

• Part of the OWASP’s “Top Ten Mobile Risks”

for 2014.

Proposed Solution

PROBLEM
Application repackaging is a widely used

method for malware distribution, revenue

stealing and piracy. Detecting repackaged

applications can be very challenging.

SOLUTION

Basing the detection on elements of the

application that an attacker is reluctant to

significantly alter allowed us to detect

repackaged applications at a very high rate.

Threats

Results

Detection Process

Algorithms

• Attacker’s weak point: If data that define

and distinguish the application (its name and

its icon) get significantly altered during the

repackaging process, it is not more likely to

get installed on a victim's device than any

random application.

• Maintain a database with verified legitimate

applications.

• Prior to the installation process a device

extracts and sends relevant application

information to the server.

• In case the application does not exist on the

server, image and string similarity algorithms

are used to retrieve perceptually similar

applications.

• The server makes a decision and returns it to

the device

• 91.5% detectability rate

• Low false positive/false negative rates

• Detectability of applications that only clone

the original application’s name and icon (no

source-code) – Example: Figure 2

• We noticed that attackers very rarely alter the

names/icons of repackaged applications

significantly

• To the developer
1. Unauthorised redistribution

2. Advertisement revenue stealing

3. Cracking (Piracy)

• To the user
1. Trojan Horse

2. Denial of application upgrade

• Five elements are extracted from the tested

application prior to installation:
1. Hash of the (signed) application

2. Hash of the unsigned application

3. Hash of the developer’s signature

4. Application name

5. Application icon

• Data is sent to a trusted server

• The server processes the data and returns a

decision

Figure 1: The detection process

Figure 2: Real world example
Upon checking an application with name

“googl app stoy”, the server detects that an

application with similar name/icon pair exists

in the trusted database and returns it.

Project Goals

• Application download source independent,

proactive detection

• Fast detection

• Do not rely on application stores/developers to

take actions

• Initiate process from the client side

• Respect the user’s bandwidth

Compared to Previous Works

• As accurate

• Much faster

• Application download source independent

• Detects applications that only clone the name

and the icon

• Cheaper (money and resource wise)

